#atom

Semantic search system using vector embeddings to find relevant documents

Core Idea: Vector stores enable efficient semantic search by converting text documents into numerical vectors (embeddings) and retrieving the most similar documents to a query based on vector similarity metrics.

Key Elements

Core Components

Implementation Process

  1. Document Ingestion:
    from langchain_community.document_loaders import WebBaseLoader
    
    # Load documents
    loader = WebBaseLoader(["https://docs.example.com/page1", "https://docs.example.com/page2"])
    documents = loader.load()
    

2. **Text Splitting**:
    
    ```python
    from langchain.text_splitter import RecursiveCharacterTextSplitter
    
    # Split documents into chunks
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    chunks = text_splitter.split_documents(documents)
    ```
    
3. **Embedding Generation**:
    
    ```python
    from langchain_openai import OpenAIEmbeddings
    
    # Create embeddings
    embeddings = OpenAIEmbeddings()
    ```
    
4. **Vector Store Creation**:
    
    ```python
    from langchain_community.vectorstores import Chroma
    
    # Create and persist vector store
    vectorstore = Chroma.from_documents(
        documents=chunks,
        embedding=embeddings,
        persist_directory="./docs_vectorstore"
    )
    ```
    
5. **Query Execution**:
    
    ```python
    # Perform similarity search
    query = "How do I implement feature X?"
    results = vectorstore.similarity_search(query, k=3)
    ```
    

### Vector Store Options

- **In-memory**: FAISS, for speed and simplicity
- **Persistent**: Chroma, Pinecone, Weaviate, Qdrant
- **Hybrid search**: Combining keyword and semantic search (Elasticsearch with vector extensions)
- **Managed services**: Pinecone, Qdrant Cloud, Weaviate Cloud

### Advanced Techniques

- **Metadata Filtering**: Narrowing search based on document metadata
- **Hybrid Search**: Combining keyword and vector search for better results
- **Dynamic Document Updates**: Incrementally updating vector stores
- **Query Expansion**: Enriching queries to improve retrieval quality
- **Cross-encoder Reranking**: Using a second model to rerank initial results

## Connections

- **Related Concepts**: Retrieval-Augmented Generation, Embedding Models, Semantic Search
- **Applications**: LangGraph Query Tool, MCP Resources
- **Implementation Frameworks**: LangChain, LlamaIndex
- **Integration Methods**: MCP Server Implementation, LLM Tool Use

## References

1. LangChain documentation on vector stores
2. "Neural Information Retrieval: A Literature Review" (academic paper)
3. Pinecone, Chroma, and Weaviate documentation
4. Implementation guides for RAG systems

#VectorStore #Embeddings #SemanticSearch #DocumentRetrieval #RAG #LLM #AITools

---
**Connections:**
- 
---
**Sources:**
- From: LangChain - Understanding MCP From Scratch