#atom

The fundamental billing model for Large Language Model API services

Core Idea: Token-based pricing is a metered billing approach where LLM providers charge based on the number of tokens processed, with separate rates for input (prompt) tokens and output (completion) tokens.

Key Elements

Differential Input/Output Pricing

Model-Specific Rates

Volume-Based Discounts

Implementation Requirements

Example Application

// Pricing constants (per million tokens)
const GEMINI_INPUT_COST = 0.10;  // $0.10 per million input tokens
const GEMINI_OUTPUT_COST = 0.40; // $0.40 per million output tokens
function calculateCost(inputTokens, outputTokens) {
  // Convert to millions and multiply by rate
  const inputCost = (inputTokens / 1000000) * GEMINI_INPUT_COST;
  const outputCost = (outputTokens / 1000000) * GEMINI_OUTPUT_COST;
  
  return {
    inputCost,
    outputCost,
    totalCost: inputCost + outputCost
  };
}
// Example usage
const dailyUsage = {
  inputTokens: 5000000,  // 5 million tokens
  outputTokens: 1200000   // 1.2 million tokens
};
const dailyCost = calculateCost(dailyUsage.inputTokens, dailyUsage.outputTokens);
console.log(`Daily cost: ${dailyCost.totalCost.toFixed(2)}`);
// Output: "Daily cost: $0.98"

Fairness Implications

Additional Connections

References

  1. OpenAI, Google, and Anthropic pricing documentation
  2. Tokenizer tools that estimate token counts for different models
  3. Cost calculators available from major LLM providers

#tokenPricing #LLMCosts #AIEconomics #usageBasedBilling #promptEngineering


Sources: