#atom

Search engine API integration that provides LLMs with up-to-date information retrieval capabilities

Core Idea: The Tavily Search Tool is a LangChain integration that connects language models to Tavily's search engine API, allowing agents to perform web searches and retrieve current information beyond their training data.

Key Elements

Implementation Example

from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_anthropic import ChatAnthropic
from langgraph.prebuilt import create_react_agent

# Initialize the Tavily search tool
search = TavilySearchResults(max_results=2)

# Test direct usage
search_results = search.invoke("current weather in San Francisco")
print(search_results)

# Integrate with an agent
model = ChatAnthropic(model_name="claude-3-sonnet-20240229")
tools = [search]
agent_executor = create_react_agent(model, tools)

# The agent can now use Tavily search to answer questions
response = agent_executor.invoke({
    "messages": [HumanMessage(content="What's the latest news about quantum computing?")]
})

Applications

Connections

References

  1. LangChain documentation for Tavily search integration
  2. Tavily API documentation

#tavily #search-tool #langchain #information-retrieval #agents #external-tools


Connections:


Sources: