SQLAlchemy's Base
Class:
- In SQLAlchemy, the
Base
class is part of the Declarative Base system, which is used to define database models (tables) as Python classes. - It is created using
sqlalchemy.ext.declarative.declarative_base()
. - Example:
from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class User(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String)
Pydantic's BaseModel
Class:
- In Pydantic, the
BaseModel
class is used to define data models for validation, parsing, and serialization. - It is part of Pydantic's core functionality and is not related to databases or ORM.
- Example:
from pydantic import BaseModel class UserCreate(BaseModel): name: str email: str
Key Differences:
Feature | SQLAlchemy Base |
Pydantic BaseModel |
---|---|---|
Purpose | Defines database models (ORM). | Defines data validation and serialization models. |
Usage | Maps Python classes to database tables. | Validates and parses data (e.g., JSON, request bodies). |
Dependencies | Part of SQLAlchemy's ORM system. | Part of Pydantic's core functionality. |
Example Use Case | Interacting with a relational database. | Validating API request/response data. |
Can They Be Used Together?
Yes, SQLAlchemy's Base
and Pydantic's BaseModel
can be used together in applications like FastAPI:
- SQLAlchemy handles database interactions.
- Pydantic handles data validation and serialization for APIs.
Example:
from fastapi import FastAPI
from pydantic import BaseModel
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
# SQLAlchemy setup
DATABASE_URL = "sqlite:///./test.db"
engine = create_engine(DATABASE_URL)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base() # SQLAlchemy's Base
# SQLAlchemy model
class User(Base):
__tablename__ = "users"
id = Column(Integer, primary_key=True, index=True)
name = Column(String)
email = Column(String)
# Pydantic model
class UserCreate(BaseModel): # Pydantic's BaseModel
name: str
email: str
class UserResponse(BaseModel):
id: int
name: str
email: str
class Config:
orm_mode = True # Allows Pydantic to work with SQLAlchemy ORM objects
# FastAPI app
app = FastAPI()
@app.post("/users/", response_model=UserResponse)
def create_user(user: UserCreate):
db_user = User(name=user.name, email=user.email) # SQLAlchemy model
db = SessionLocal()
db.add(db_user)
db.commit()
db.refresh(db_user)
return db_user # Pydantic serializes the SQLAlchemy object
Key Points:
- SQLAlchemy's
Base
is for defining database models. - Pydantic's
BaseModel
is for validating and serializing data. - They are independent but can be integrated in applications like FastAPI.
Conclusion:
SQLAlchemy does not use Pydantic's BaseModel
under the hood. They are separate tools with distinct roles, but they can be combined effectively in modern Python applications.
Connections:
Sources:
- From: SQLAlchemy