#atom

SQLAlchemy's Base Class:

Pydantic's BaseModel Class:

Key Differences:

Feature SQLAlchemy Base Pydantic BaseModel
Purpose Defines database models (ORM). Defines data validation and serialization models.
Usage Maps Python classes to database tables. Validates and parses data (e.g., JSON, request bodies).
Dependencies Part of SQLAlchemy's ORM system. Part of Pydantic's core functionality.
Example Use Case Interacting with a relational database. Validating API request/response data.

Can They Be Used Together?

Yes, SQLAlchemy's Base and Pydantic's BaseModel can be used together in applications like FastAPI:

Example:

from fastapi import FastAPI
from pydantic import BaseModel
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

# SQLAlchemy setup
DATABASE_URL = "sqlite:///./test.db"
engine = create_engine(DATABASE_URL)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()  # SQLAlchemy's Base

# SQLAlchemy model
class User(Base):
    __tablename__ = "users"
    id = Column(Integer, primary_key=True, index=True)
    name = Column(String)
    email = Column(String)

# Pydantic model
class UserCreate(BaseModel):  # Pydantic's BaseModel
    name: str
    email: str

class UserResponse(BaseModel):
    id: int
    name: str
    email: str

    class Config:
        orm_mode = True  # Allows Pydantic to work with SQLAlchemy ORM objects

# FastAPI app
app = FastAPI()

@app.post("/users/", response_model=UserResponse)
def create_user(user: UserCreate):
    db_user = User(name=user.name, email=user.email)  # SQLAlchemy model
    db = SessionLocal()
    db.add(db_user)
    db.commit()
    db.refresh(db_user)
    return db_user  # Pydantic serializes the SQLAlchemy object

Key Points:

  1. SQLAlchemy's Base is for defining database models.
  2. Pydantic's BaseModel is for validating and serializing data.
  3. They are independent but can be integrated in applications like FastAPI.

Conclusion:

SQLAlchemy does not use Pydantic's BaseModel under the hood. They are separate tools with distinct roles, but they can be combined effectively in modern Python applications.


Connections:


Sources: