#atom

Subtitle:

Creating information-rich memory units for effective knowledge management


Core Idea:

Note construction in AI memory systems involves creating structured, multi-faceted representations of information that capture both explicit content and derived semantic understanding, enabling more effective storage, retrieval, and utilization of knowledge.


Key Principles:

  1. Multi-attribute Representation:
    • Structuring notes with multiple components (content, context, keywords, tags) to enhance retrievability
  2. Semantic Enrichment:
    • Using AI to generate contextual descriptions that capture implicit meaning beyond literal content
  3. Atomicity:
    • Creating self-contained units of knowledge that can be individually retrieved and meaningfully linked

Why It Matters:


How to Implement:

  1. Component Extraction:
    • Process raw input to separate explicit content from metadata
  2. LLM-based Enrichment:
    • Generate contextual descriptions, keywords, and tags using language models
  3. Vector Representation:
    • Create dense embeddings that capture the semantic essence of the note

Example:

def construct_memory_note(content, timestamp):
# Generate rich semantic components using LLM
prompt = f"""
Generate a structured analysis of the following content:

Format as JSON with the following:
- keywords: key concepts and terminology
- context: one-sentence summary of main topic and points
- tags: broad categories for classification
"""

llm_output = llm_model.generate(prompt)
note_components = parse_json(llm_output)

# Create embedded representation
combined_text = content + note_components['context']
embedding = text_encoder.encode(combined_text)

return MemoryNote(
content=content,
timestamp=timestamp,
keywords=note_components['keywords'],
context=note_components['context'],
tags=note_components['tags'],
embedding=embedding
)
```


Connections:


References:

  1. Primary Source:
    • Xu, W., Liang, Z., Mei, K., et al. (2025). "A-MEM: Agentic Memory for LLM Agents"
  2. Additional Resources:
    • Ahrens, S. (2017). "How to Take Smart Notes"
    • Reimers, N., and Gurevych, I. (2019). "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks"

Tags:

#note-construction #ai-memory #knowledge-representation #information-extraction #semantic-enrichment



Connections:


Sources: