#atom

Methods for integrating Model Context Protocol into AI applications

Core Idea: Implementing MCP in an AI workflow requires connecting an LLM provider (like Ollama or Claude) with MCP servers, which can be accomplished through dedicated applications, agent frameworks, or custom code solutions.

Key Elements

Implementation Options

1. Using Existing MCP Client Applications

2. Using Agent Frameworks with MCP Support

3. Building Custom MCP Clients

Common Challenges

For Local LLMs (like Ollama)

For Cloud LLMs (like Claude or GPT-4)

Implementation Patterns

Example Python Implementation

import requests
from mcp import MCPClient

# Connect to an MCP server
mcp_client = MCPClient("http://localhost:8090")

# Connect to LLM provider
def ask_llm(prompt):
    response = requests.post("http://localhost:1234/v1/chat/completions", json={
        "model": "local-model",
        "messages": [{"role": "user", "content": prompt}]
    })
    return response.json()["choices"][0]["message"]["content"]

# Get available tools from MCP server
tools = mcp_client.list_tools()
    
# Create tool descriptions for the model
tool_descriptions = "\n".join([
    f"Tool: {tool['name']}\nDescription: {tool['description']}"
    for tool in tools
])

# Create prompt with tools and user input
prompt = f"""You have access to the following tools:

{tool_descriptions}

To use a tool, output exactly:
USE TOOL: [tool_name]
ARGUMENTS: [JSON formatted arguments]

User: {user_input}
"""

# Get model response and process tool calls
# ...

Emerging Development Patterns

Connections

References

  1. Anthropic MCP Documentation: docs.anthropic.com/claude/docs/model-context-protocol
  2. GitHub repositories with MCP implementations
  3. Cursor IDE MCP Implementation documentation

#model-context-protocol #implementation #llm-integration #agentic-ai #development


Connections:


Sources: