#atom

Creating clients that connect to MCP servers

Core Idea: MCP clients connect to MCP servers to access tools and functionality, requiring specific implementation patterns to establish connections and handle tool calls effectively.

Key Elements

Implementation Steps

  1. Client Setup

    • Import the MCP client from your AI framework (e.g., experimental_createMCPClient from Vercel AI)
    • Specify the endpoint URL for the MCP server
    • Provide a name for the service (for identification purposes)
    • Await the connection to retrieve available tools
  2. Tool Integration

    • Collect tools from the MCP client using await mcpClient.tools()
    • Add these tools to your existing tools list
    • Ensure your system prompt directs the AI to use these tools when appropriate
  3. Connection Handling

    • Implement proper error handling for connection issues
    • Consider connection timeouts and retry logic for production applications

Code Example

// Import the MCP client
import { experimental_createMCPClient } from 'ai';

// Create an MCP client that connects to our order service
const mcpClient = experimental_createMCPClient({
  url: 'http://localhost:881/sse', // SSE endpoint
  name: 'orderService'
});

// Get the available tools from the MCP client
export async function getTools() {
  // Get tools from the MCP client
  const mcpTools = await mcpClient.tools();
  
  // Combine with other tools if needed
  return {
    getProducts,
    recommendGuitar,
    ...mcpTools // Adds tools from MCP server
  };
}

Use Cases

Best Practices

Additional Connections

References

  1. Blue Collar Coder video on Model Context Protocol implementation
  2. Vercel AI documentation for experimental MCP clients

#mcp #client #ai-tools #implementation

Connections:


Sources: