#atom

Framework for developing applications powered by language models through composable components

Core Idea: LangChain is an open-source framework that simplifies the creation of LLM-powered applications by providing standardized interfaces for chains, agents, and tools that can be combined to build complex AI systems with enhanced capabilities.

Key Elements

Code Example

from langchain_community.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_openai import ChatOpenAI
from langchain.chains import RetrievalQA

# Load documents
loader = TextLoader("data.txt")
documents = loader.load()

# Split and index documents
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)

# Create vector store
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(texts, embeddings)

# Create QA chain
llm = ChatOpenAI(model_name="gpt-4")
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=vectorstore.as_retriever()
)

# Query the system
query = "What key points are covered in this document?"
result = qa_chain.invoke(query)
print(result["result"])

Key Benefits

Connections

References

  1. LangChain GitHub repository: https://github.com/hwchase17/langchain/
  2. LangChain Documentation: https://python.langchain.com/docs/get_started/introduction
  3. LangChain JavaScript Documentation: https://js.langchain.com/docs/

#langchain #llm-tools #ai-framework #agents #rag #prompt-engineering


Sources: