#atom

MCP-enabled tool for retrieving information from LangGraph documentation

Core Idea: The LangGraph Query Tool is an MCP tool implementation that provides AI applications with the ability to search and retrieve relevant information from LangGraph documentation, enabling more accurate responses about LangGraph concepts and usage.

Key Elements

Implementation Details

Technical Implementation

from langchain_core import tool
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma

@tool
def langgraph_query_tool(query: str) -> str:
    """Search LangGraph documentation for information about the given query."""
    # Load the vector store
    vector_store = Chroma(
        embedding_function=OpenAIEmbeddings(),
        persist_directory="./langgraph_docs_store"
    )
    
    # Perform search
    docs = vector_store.similarity_search(query, k=3)
    
    # Format results
    results = "\n\n".join([doc.page_content for doc in docs])
    return results

MCP Integration

Use Cases

Connections

References

  1. LangChain documentation on tool creation
  2. LangGraph official documentation
  3. Vector store implementation guides
  4. MCP tool implementation examples

#LangGraph #MCP #Tools #DocumentRetrieval #VectorStore #Embeddings #RAG #AITools


Connections:


Sources: