#atom

A Core Capability Enabling LLMs to Interact with External Tools

Core Idea: Function calling enables LLMs to invoke external tools and systems by generating structured outputs (typically JSON) with appropriate parameters, extending their capabilities beyond their parametric knowledge and allowing them to take concrete actions. Selecting the correct tool from a large set, however, presents a scalability challenge often addressed by dynamic retrieval techniques.

Key Elements

Fundamental Mechanics

Implementation Approaches

    # OpenAI function calling example
    response = client.chat.completions.create(
      model="gpt-4",
      messages=[{"role": "user", "content": "What's the weather in New York?"}],
      tools=[{
        "type": "function",
        "function": {
          "name": "get_weather",
          "description": "Get current weather in a location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {"type": "string", "description": "City name"},
              "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
            },
            "required": ["location"]
          }
        }
      }]
    )
    # LangChain tool definition
    from langchain.tools import Tool
    
    weather_tool = Tool(
        name="get_weather",
        description="Get current weather in a location",
        func=lambda location: weather_api.get_weather(location)
    )

Technical Requirements

Function Selection & Execution

Why It Matters

Evolution of Function Calling

Limitations and Challenges

Connections

Direct Dependencies

Conceptual Framework

Implementation Methods

Applications

Broader Implications

References

  1. OpenAI Function Calling Documentation (2023)
  2. Anthropic Tool Use API Reference (2023-2024)
  3. LangChain Tools Framework Documentation
  4. Berkeley Function Calling Leaderboard methodology
  5. Brown, T., et al. (2022). "Language Models are Few-Shot Learners"
  6. Zhang, S., et al. (2023). "Function Calling: Teaching Language Models to Reason and Act"
  7. Qian, Y. (2023). "A Comprehensive Survey of Function Calling in Large Language Models"

#function-calling #tool-calling #LLM #tool-use #JSON #APIs #structured-output #agents #api-integration

Sources: