Numerical representations of data enabling semantic comparison

Core Idea: Embeddings transform diverse data types (text, audio, images) into fixed-length numerical vectors that capture semantic properties, enabling mathematical comparison of otherwise incomparable content.

Key Elements

Fundamental Characteristics

Generation Process

Data Types Supported

Comparison Methods

Compression Techniques

Practical Applications

Technical Implementation

Code Example (Text Embedding with OpenAI)

import openai

# Initialize the OpenAI client
client = openai.OpenAI(api_key="your-api-key")

# Generate embeddings for a text
response = client.embeddings.create(
    input="The concept of vector embeddings is fascinating.",
    model="text-embedding-ada-002"
)

# Access the embedding vector
embedding_vector = response.data[0].embedding
print(f"Vector length: {len(embedding_vector)}")

Storage Considerations

Additional Connections

References

  1. "Neural Information Processing Systems (NeurIPS) - Advances in Vector Embeddings"
  2. "Efficient Embedding Compression Techniques" - Google Research
  3. OpenAI Embeddings Documentation

#embeddings #vector-representations #similarity-search #neural-networks #data-representation


2024 12 30 03 35 36 - Binary vector embeddings are so cool
2024 12 30 03 42 50 - 🪆 Introduction to Matryoshka Embedding Models