#atom

End-to-end workflow for transforming raw documents into searchable, AI-accessible knowledge

Core Idea: A document processing pipeline transforms unstructured documents into structured, searchable data through a series of steps including parsing, OCR, embedding generation, and storage in vector databases to enable retrieval-augmented generation.

Key Elements

Pipeline Components

Ingestion Layer

Processing Layer

Storage Layer

Retrieval Process

  1. Vector Search: Finding relevant document chunks via embedding similarity
  2. Reranking: Refining search results (e.g., BGE Reranker)
  3. Context Assembly: Preparing retrieved information for LLM consumption
  4. LLM Processing: Generating responses based on retrieved context

Optimization Techniques

Connections

References

  1. GitHub: ragflow/deepdoc
  2. GitHub: allenai/olmocr
  3. GitHub: nvidia/nv-ingest

#document-processing #rag #vector-search #data-pipeline #nlp


Connections:


Sources: