#atom

Creating custom servers that expose tools, resources, and prompts through the Model Context Protocol

Core Idea: Building MCP servers involves creating standardized endpoints that package tools, data resources, and prompt templates for LLMs to consume, enabling interoperability and reuse across different AI applications.

Key Elements

Development Approaches

Architecture Considerations

Implementation Steps

  1. Choose SDK:

    • Python SDK with UVX for Python-based servers
    • JavaScript SDK with Node.js for JavaScript-based servers
  2. Define Tools:

    • Create function signatures with proper parameter types
    • Write clear descriptions for LLM understanding
    • Implement actual functionality in handler functions
  3. Add Resources (optional):

    • Define document schemas
    • Implement resource fetching logic
    • Configure caching behavior
  4. Create Prompts (optional):

    • Design template structures
    • Define parameter schemas
    • Implement rendering logic
  5. Test Server:

    • Validate with local clients
    • Test with sample requests
    • Verify error handling

Code Example (Python)

from mcp import MCPServer, define_tool, Resource

# Create server instance
server = MCPServer("My Custom Tools")

# Define a tool with parameters
@server.tool(
    name="database.query",
    description="Run a query against the database",
    parameters={
        "query": {
            "type": "string",
            "description": "SQL query to execute"
        },
        "database": {
            "type": "string",
            "description": "Database name",
            "default": "main"
        }
    }
)
async def execute_query(query: str, database: str = "main"):
    # Implementation logic here
    result = db_connection.execute(query, db=database)
    return {"rows": result.rows, "count": len(result.rows)}

# Define a resource
@server.resource(
    name="documentation",
    description="API documentation"
)
async def get_documentation():
    with open("docs.md", "r") as f:
        return Resource(content=f.read(), mime_type="text/markdown")

# Start the server
if __name__ == "__main__":
    server.start(host="localhost", port=8080)

Common Challenges

Best Practices

Tool Design

Security Considerations

Documentation

LLM-Assisted Development

Using Claude or other AI assistants to build MCP servers:

  1. Share MCP documentation with the LLM
  2. Describe the desired server functionality
  3. Request complete implementation code
  4. Review and modify the generated code
  5. Test with sample requests

Connections

References

  1. MCP Server Development Guide: modelcontextprotocol.io/server-dev
  2. Python MCP SDK Documentation: github.com/anthropics/mcp-python
  3. JavaScript MCP SDK Documentation: github.com/anthropics/mcp-js
  4. Example Server Implementations: github.com/anthropics/mcp-examples

#MCPServer #BuildingMCP #ToolDevelopment #AITools #PythonSDK #JavaScriptSDK #ServerDevelopment


Connections:


Sources: