Subtitle:
Controlling AI feature deployment, experimentation, and rollout through dynamic toggles
Core Idea:
AI Feature Flagging applies feature flag techniques specifically to AI components, enabling controlled rollouts, A/B testing, and graceful degradation through runtime configuration rather than code deployment.
Key Principles:
- Progressive Delivery:
- Deploy AI features to limited user segments before full release to manage risk.
- Experiment-Driven Development:
- Test multiple AI implementations simultaneously to determine optimal approaches.
- Runtime Control:
- Enable or disable AI capabilities without requiring application redeployment.
Why It Matters:
- Risk Mitigation:
- Limits exposure to potential issues with new AI features or models.
- Optimization:
- Facilitates data-driven decision making about AI implementations.
- Operational Flexibility:
- Provides emergency controls for cost management or performance issues.
How to Implement:
- Flag Definition:
- Create a structured system for AI-specific feature flags and configurations.
- Targeting Rules:
- Develop rules for selective feature enablement based on user attributes or context.
- Evaluation Logic:
- Implement flag checking within AI service access points.
Example:
-
Scenario:
- Managing the rollout of multiple AI-powered features in a product.
-
Application:
import { PostHog } from 'posthog-node';
class AIFeatureFlagService {
private posthog: PostHog;
private localOverrides: Map<string, boolean>;
private featureConfigs: Map<string, any>;
constructor() {
// Initialize PostHog for feature flags
this.posthog = new PostHog(process.env.POSTHOG_API_KEY, {
host: 'https://app.posthog.com'
});
// Local emergency overrides (take precedence over PostHog)
this.localOverrides = new Map();
// Feature-specific configurations
this.featureConfigs = new Map();
// Initialize default configurations
this.initDefaultConfigs();
}
private initDefaultConfigs() {
this.featureConfigs.set('content-generator', {
defaultModel: 'gpt-3.5-turbo',
premiumModel: 'gpt-4',
maxTokens: 1000,
temperature: 0.7
});
this.featureConfigs.set('support-assistant', {
model: 'claude-instant',
maxTokens: 2000,
enabledCategories: ['billing', 'technical', 'account']
});
// More feature configurations...
}
async isEnabled(featureKey: string, userId: string, userProperties: any = {}) {
// Check emergency overrides first
if (this.localOverrides.has(featureKey)) {
return this.localOverrides.get(featureKey);
}
// Check PostHog feature flag
try {
const result = await this.posthog.isFeatureEnabled(
ai-${featureKey}
,
userId,
userProperties
);
return result;
} catch (error) {
console.error(Error checking feature flag: ${error.message}
);
// Default to disabled on error
return false;
}
}
async getConfiguration(featureKey: string, userId: string, userProperties: any = {}) {
// Check if feature is enabled first
const isEnabled = await this.isEnabled(featureKey, userId, userProperties);
if (!isEnabled) {
return { enabled: false };
}
// Get default configuration
const defaultConfig = this.featureConfigs.get(featureKey) || {};
// Check PostHog for dynamic configuration
try {
const dynamicConfig = await this.posthog.getFeatureFlag(
ai-${featureKey}-config
,
userId,
userProperties
);
// Merge default with dynamic config
return {
enabled: true,
...defaultConfig,
...(dynamicConfig || {})
};
} catch (error) {
console.error(Error fetching feature config: ${error.message}
);
// Fall back to default config
return {
enabled: true,
...defaultConfig
};
}
}
// Emergency override for incidents
setEmergencyOverride(featureKey: string, enabled: boolean) {
console.warn(Setting emergency override for ${featureKey}: ${enabled}
);
this.localOverrides.set(featureKey, enabled);
}
clearEmergencyOverride(featureKey: string) {
console.log(Clearing emergency override for ${featureKey}
);
this.localOverrides.delete(featureKey);
}
// Usage example
async useAIFeature(featureKey: string, userId: string, userProperties: any = {}) {
const config = await this.getConfiguration(featureKey, userId, userProperties);
if (!config.enabled) {
return {
success: false,
reason: 'feature_disabled',
message: AI feature '${featureKey}' is currently disabled
};
}
// Feature is enabled, proceed with configuration
console.log(Using AI feature '${featureKey}' with config:
, config);
// Feature-specific implementation would follow...
return {
success: true,
config
};
}
}
// Example usage
async function generateContent(userId, prompt) {
const featureFlagService = new AIFeatureFlagService();
const featureResult = await featureFlagService.useAIFeature(
'content-generator',
userId,
{ accountTier: 'premium', usageCount: 27 }
);
if (!featureResult.success) {
return { error: featureResult.message };
}
// Select model based on user properties and configuration
const model = featureResult.config.usePremiumModel ?
featureResult.config.premiumModel :
featureResult.config.defaultModel;
// Generate content using the selected model
// ...
}
```
- Result:
- Fine-grained control over AI feature availability, with the ability to roll out incrementally, test variations, and implement emergency controls.
Connections:
- Related Concepts:
- Resilient AI Systems: Feature flags provide a mechanism for implementing resilience.
- AI Cost Management: Flags can be used to control costs by toggling expensive features.
- Broader Concepts:
- Feature Management: General practice of using feature flags for software deployment.
- Canary Releases: Releasing features to subsets of users to validate performance.
References:
- Primary Source:
- Feature flag platform documentation (PostHog, LaunchDarkly, etc.)
- Additional Resources:
- Progressive delivery methodologies
- A/B testing frameworks for AI features
Tags:
#featureFlags #AIDeployment #progressiveDelivery #experimentDrivenDevelopment #ABTesting #runtimeControl #riskMitigation
Connections:
Sources: